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Introduction

I am an algebraic topologist and my research is about the May spectral sequence
and the Dyer-Lashof operations on Hopf rings.

One of the important goals in algebraic topology is to understand the stable
homotopy groups of spheres πst∗ (S). They have many connections to other areas
of mathematics. One recent example is Wang and Xu’s work [12] proving the
uniqueness of the smooth structure on S61. The recent work of Hill, Hopkins and
Ravenel [2] on the Kervaire invariant one problem has renewed interest in these
calculations, and work of Isaksen, Wang and Xu has pushed the calculations to the
nineties stems. Despite this, the May spectral sequence has the potential to push
the calculations far further. It is an effective way to compute the cohomology of
the Steenrod algebra Ext∗,∗A (Fp,Fp) which is the E2 page of the Adams spectral
sequence which converges to the stable homotopy groups of spheres.

My work started with the E2 page of the May spectral sequence at the prime
2. Compared to the cohomology of the Steenrod algebra, the E2 page of the May
spectral sequence can be computed in a much bigger range. May [5] conjectured
what all the indecomposables of the E2 page are and I have conjectured all the
relations among these indecomposables (See [4]). I have proven both conjectures in
a large range of dimensions, which indicates that it is possible that these indecom-
posables and relations do in fact describe the whole E2 page. I also show that the
E2 page is nilpotent free in this range, and I conjecture that the whole E2 page is
nilpotent free. This is startling because all of the elements in positive dimensions
in the stable homotopy groups of spheres are nilpotent. Apart from being a tool to
compute the cohomology of the Steenrod algebra, the E2 page of the May spectral
sequence has strong connections to Massey products, which makes it interesting in
its own right.

My other project is about the Dyer-Lashof operations on Hopf rings. Hopf rings
concern the homology of all of the spaces Rn of a commutative ring spectrum R.
In 2017, Tyler Lawson proved that the Brown-Peterson spectrum at the prime 2
is not an E∞ ring spectrum. He used secondary power operations and his proof
involved partial information about Dyer-Lashof operations on Hopf rings (see [11]).
It is known by Cohen, Lada and May [1] that the homology of the zeroth space
R0 of an E∞-ring spectra R is equipped with two kinds of Dyer-Lashof operations,
one additive and one multiplicative, and the homology of the spectrum R also has
Dyer-Lashof operations. However, the two kinds of operations on the Hopf rings
have hardly been studied at all. An appropriate definition of the multiplicative
operations on the homology Hopf rings is still lacking. I have defined such multi-
plicative operations on H∗(Rn) for varying n and they converge to the Dyer-Lashof
operations on H∗(R).
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Project 1: The May Spectral Sequence

Problem 1. The generators and relations of E2. Let A be the Steenrod
algebra at the prime 2. We have the following May spectral sequence:

E2 = Exts,t,pE0A (F2,F2) =⇒ Exts,tA (F2,F2).

May has computed the E2-term in stems t−s ≤ 164. He has defined the elements
hi, b

i
j and hi(S) in E2 and proved that they are indecomposables. The following

conjecture is at least true in stems t− s ≤ 164 and could be true in general.

Conjecture 1 (May). The elements hi, b
i
j(j > 1) and hi(S) form a basis for the

indecomposables of E2.

In addition to this conjecture, I made the following two conjectures about the
relations in E2.

Conjecture 2 (Lin, [4]). The relations in E2 are implied by the following. Each
of them needs some conditions on i, j, S, T , etc.

(1)
∑
k bikbkj = 0

(2) hS1,T1hS2,T2 = 0
(3)

∑
s∈S bsjhS−{s},T+{s} = 0

(4)
∑
t∈T bithS+{t},T−{t} = 0

(5) hS1,T1
hS2,T2

=
∑

I⊂T ′′1 ∩S2

hS′′1 +I,T ′′1 −IhS′1+S2−I,T ′1+T2+I

(6) hS1,T1
hS2,T2

=
∑

I⊂T1∩S′′2

hS′′2 −I,T ′′2 +IhS1+S′2+I,T1+T ′2−I

(7) hS1,T1
hS2,T2

=
∑
I⊂S′1
J⊂T ′2

hS′1−I,T ′1+IhS′2+J,T ′1−JbS′′1 +I,T ′′2 +J

(8) If
∑
i xihSi−{a},Ti−{b} = 0 and each xi satisfies some conditions, then∑

i

xihSi,Ti = 0.

Here bij is my notation for bij−i, hS,T is equal to some product of hi(S
′) and bS,T

is a polynomial in the bij .

Conjecture 3 (Lin, [4]). The algebra E2 is nilpotent free.

One support for Conjecture 2 is the following theorem.

Theorem 4 (Lin, [4]). The relations (1)-(6) in Conjecture 2 hold in all degrees
while relations (7), (8) hold at least in the range t− s ≤ 285.

The algebra E2 has a big subalgebra HX7 which is the E2-term of the May
spectral sequence for A6, i.e., we have a spectral sequence

HX7 =⇒ Ext∗,∗A6
(F2,F2).

Here A6 is the subalgebra of the Steenrod algebra generated by Sq2
i

, 0 ≤ i ≤
6. The subalgebra HX7 covers a large range of dimensions in E2. We have a
homomorphism

HX7 ⊗ F2[h7]

(h6h7, h4(1)h7)
−→ E2

which is isomorphic in the range t− s ≤ 285.
With the assistance of Gröbner bases and computer programming, I computed

HX7 and the result shows the following.
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Theorem 5 (Lin, [4]). Conjectures 1 and 2 hold in HX7.

The tool I used to describe an additive basis of HX7 is the theory of Gröbner
bases. The use of Gröbner bases led me to the following unexpected discovery.

Theorem 6 (Lin, [4]). The subalgebra HX7 of E2 is nilpotent free.

These theorems are strong evidence for Conjectures 1, 2 and 3 since now we
know that they are all true at least in the range t− s ≤ 285.

Problem 2. Connection to Massey products. The E2 page of the May spec-
tral sequence is isomorphic to HX where X is a polynomial differential graded
algebra given by the following

X = F2[Rij : 0 ≤ i < j],

dRij =
∑
k

RikRkj .

We define the subalgebra Xn = F2[Rij : 0 ≤ i < j ≤ n]. I observed that the
differential algebra Xn plays an important role in Massey products.

Theorem 7 (Lin, [4]). If A is a commutative differential algebra, then the de-
compositions of zero in HA as an n-ary Massey product (together with a defining
system)

0 ∈ 〈a1, . . . , an〉, ai ∈ HA
are in one-to-one correspondence to maps of differential algebras:

f : Xn → A

where f induces the algebraic map

f∗ : HXn → HA

with f∗(hi−1) = ai, 1 ≤ i ≤ n.

Theorem 8 (Lin, [4]). A nontrivial element a ∈ HA and a defining system for the
Massey product

a ∈ 〈a1, . . . , an〉
corresponds to the obstruction to obtaining the dashed map

Xn

##

Xn−1

f0

��

? _
i0oo

Xn−1
f1

//?�

i1

OO

A

where f0 corresponds to the sub-defining system for 0 ∈ 〈a1, . . . , an−1〉 and f1 for
0 ∈ 〈a2, . . . , an〉. The embeddings i0 and i1 are given by i0(Rij) = Rij and i1(Rij) =
Ri+1,j+1.

The E2 page of the May spectral sequence itself has a lot of interesting Massey
products.

Theorem 9 (Lin-May, [4]). In E2, we have

hi(S) ∈ 〈hi, hi+1, . . . , hi+2n−2, h
′
i(S)〉.

Here h′i(S) is a product of some indecomposables hj(S1) determined by hi(S).



4 WEINAN LIN

The proof was done by May in the past in his unpublished work and I give my
own proof in [4]. I also show that there is no indeterminacy at least in the range
t− s ≤ 285 with the assistance of computer programs.

Problem 3. Computation of the May spectral sequence. In the E2 page,
the d2 differentials of bij are computed by May:

d2(bi,i+2) = h3i+1 + h2ihi+2,

d2(bij) = hi+1bi+1,j + bi,j−1hj+1, j − i > 2.

May also computed d2(hi(S)) in the range t− s ≤ 164.

• d2(hi) = 0,
• d2(hi(1)) = hih

2
i+2,

• d2(hi(1, 3)) = hihi+2hi+2(1) + hi(1)h2i+4,
• d2(hi(1, 2)) = hi+3hi(1, 3).

By doing an explicit construction in the cobar complex of A∗, I am able to prove
the following in all stems

Theorem 10 (Lin, [4]). The d2 differential on hi(S) is given by the following:

d2hi(s1, . . . , sn−1) =
∑

j=n−1 or
sj+1<sj+1

hi+sj+1hi(s1, . . . , sj−1, sj + 1, sj+1, . . . , sn−1).

To do further computations in the May spectral sequence beyond the E2 page,
I have the following theorem which systematically extends one of the techniques
used by May and Tangora.

Theorem 11 (Lin, [4]). Consider the A∗-free coresolution C̃(A∗) = C(A∗) ⊗ A∗
of F2. There is a filtration on C̃(A∗) which is compatible with the May filtration
on the cobar complex C(A∗) where Cs(A∗) = I(A∗)⊗s. The map ϕ : C(A ) →
C̃(A ) induces a comparison map ϕ of spectral sequences. Consider the following
composition of comparison maps of spectral sequences

E2
+3

Sq0

��

Ext∗,∗A (F2,F2)

Sq0

��
E2

+3

ϕ

��

Ext∗,∗A (F2,F2)

ϕ

��
Ẽ2

+3 F2.

The composition in E2-terms

E2
Sq0−−−→ E2

ϕ−−→ Ẽ2

is injective.

This theorem is useful because compared to E2 =⇒ Ext∗,∗A (F2,F2), the spectral

sequence Ẽ2 =⇒ F2 is much easier to compute due to the fact that everything in
positive degrees has to be killed by differentials.
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Project 2: The Dyer-Lashof Operations on Hopf Rings

Problem 4. Define multiplicative operations on Hopf rings. Let R be an
E∞-ring spectrum. Consider the Hopf ring

⊕
nH∗(Rn) where Rn is the n’th space

of R. We know that each Rn is an E∞ space and R0 is an E∞ ring space. We have
the following Dyer-Lashof operations:

Qs : Hk(Rn)→ Hk+s(Rn), for all n,

Q̃s : Hk(R0)→ Hk+s(R0).

where Qs are the additive Dyer-Lashof operations and Q̃s are the multiplicative
Dyer-Lashof operations.

We know that Σ∞R0 → R is a map of E∞-spectra and the multiplicative op-
erations Q̃s correspond to the Dyer-Lashof operations on H∗(R). However, the

Q̃s cannot recover the Dyer-Lashof operations on H∗(R) since they only act on

H∗(R0). In order to extend Q̃s to multiplicative operations on
⊕

nH∗(Rn) I define
the following:

Definition 12. A collection of spaces {G (k,m, n)}k≥0,m>0,n≥mk is called a Hopf
operad if Σk acts on G (k,m, n) and there is a structural map

γ : G (k, n, l)× G (j1,m, n)× · · · × G (jk,m, n) −→ G (j1 + · · ·+ jk,m, l)

with axioms similar to those of an operad (See [1]).

Definition 13. We say that (G ,C ) is a Hopf operad pair if C is an operad, G is
a Hopf operad and there is an action

λ : G (k,m, n)× C (j1)× · · · × C (jk) −→ C (j1 · · · jk)

with axioms similar to those of an operad pair.

Definition 14. A (G ,C )-spectrum R is a spectrum with actions

θj : C (j)×Rjn → Rn,

ξk : G (k, n,m)×Rkn → Rm

and axioms including that the following distributivity diagram commutes:

G (k,m, n)×C (j1)×Rj1m×· · ·×C (jk)×Rjkm

ξk

��

1×θj1×···×θjk // G (k,m, n)×Rkm

ξk

��
C (j)×Rjn θj

// Rn

Theorem 15 (Lin). If R is an E∞ ring spectrum with action by the linear isome-
tries operad, then there exists an Hopf operad pair (G ,C ) which acts on R, where
C is an E∞-operad and G (k,m, n) is a Thom space of an (n −mk)-dimensional
vector bundle over an (n−mk − 1)-connected space.

Definition 16. If the pair (G ,C ) acts on R, then for any prime p we can define

Q̃n−pm,i : Hk(Rm)→ Hpk+i+n−pm(Rn)

where i ≤ n−pm, Q̃n−pm,i(x) = (ξk)∗(φ(ei)⊗xp) and φ is the Thom isomorphism.

The above operations converge to the Dyer-Lashof operations on the spectra
level when we fix n− pm and let m go to infinity:
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Theorem 17 (Lin). The following diagram commutes:

Hk(Rm)
Q̃n−pm,i //

σ∗

��

Hpk+i+n−pm(Rn)

σ∗

��
Hk−m(R)

Qi

// Hpk+i−pm(R)

.

where σ is induced by Σ∞Rn → Σ−nR and Qi(x) = θ∗(ei ⊗ xp) for H∗(R). The
relationship between Qs and Qi can be found in [1].

Current and Future Work

Problem 5. The cohomology of the Steenrod algebra. The May spectral se-
quence is a powerful tool when one tries to analyze the cohomology of the Steenrod
algebra. Because the E2 page of the May spectral sequence is a tri-graded commu-
tative algebra, it can take advantage of the parallel computing capability of modern
computers. It also helps in computing the Massey products in the cohomology of
the Steenrod algebra especially when there is no extension or indeterminacy for
degree reasons.

One of my ongoing projects is to compute the May spectral sequence for each
t = 1, 2, . . . Currently for the E2 term I have results up to t = 600 and for E4

up to t = 210, both obtained with help of computer programs. I am also trying
to compute the May spectral sequence for s = 1, 2, . . . . The cohomology of the
Steenrod algebra Exts,tA (F2,F2) is currently known for s ≤ 4 and partially known for
s = 5 using the lambda algebra (see [3]). The May spectral sequence together with

Theorem 11 is very effective in computing Exts,tA (F2,F2) by s because the power
operation Sq0 preserves s so that one can iterate Sq0 in Theorem 11. Combining
my methods with others, we might be able to substantially extend the computations
of the stable homotopy groups of spheres.

Other projects include the computation of Exts,tA (F2,F2) modulo nilpotent ele-
ments based on the work of Palmieri [7] and the computation of the stable Sq0-

families in Exts,tA (F2,F2) by the perf version of the May spectral sequence

Ext∗∗∗E0A perf (F2,F2) =⇒ Ext∗∗A perf (F2,F2).

Problem 6: The properties of multiplicative operations on Hopf rings.
Although I have set up the definition of the multiplicative operations on Hopf rings
of E∞ ring spectra and shown that it can recover the Dyer-Lashof operations on the
Hopf rings homology of spectra, these operations should satisfy properties analogous
to those of the usual Dyer-Lashof operations including the Cartan formula, the
Adem relations, the Nishida relations, the mixed Cartan relations and the mixed
Adem relations, etc. One of my plans is to verify those formulas. I also want to
make calculations of these operations on the Hopf rings of KU and MU , etc.
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