LECTURE 6 - CYCLIC HOMOLOGY

Cyclic sets.

Definition 1. A cyclic object A in a category \mathscr{A} is a simplicial object together with an automorphism t_n of order n + 1 on each A_n such that

$$d_{i}t = td_{i-1}, \ s_{i}t = ts_{i-1}, \ i \neq 0$$
$$d_{0}t_{n} = d_{n}, s_{0}t_{n} = t_{n+1}^{2}s_{n}.$$

We denote the category of cyclic objects by $s\mathscr{A}^c$. There a forgetful functor $j : s\mathscr{A}^c \to s\mathscr{A}$ from cyclic sets to simplicial sets.

Example 2. The simplicial set BG for a group G can be considered as a cyclic set by defining

$$t[g_1|\cdots|g_n] = [(g_1\cdots g_n)^{-1}|g_1|\cdots|g_{n-1}].$$

For $E_{\bullet}G = B_{\bullet}(G, G, e) = G^{\bullet+1}$, we define

$$t(g_0[g_1|\cdots|g_n]) = g_n[g_0|\cdots|g_{n-1}].$$

It is not hard to see that there is a natural inclusion $BG \subset EG$ as cyclic sets. (Check this!)

There is an equivalent definition of cyclic sets (See [1]), which is sometimes more convenient to work with.

Definition 3. A cyclic object A is a sequence of objects A_n and morphisms

$$d_i : A_n \to A_{n-1}, \ 0 \le i \le n$$
$$s_i : A_n \to A_{n+1}, \ 0 \le i \le n+1$$

such that

$$d_i \circ d_j = d_{j-1} \circ d_i$$
, if $i < j$

$$d_{i} \circ s_{j} = \begin{cases} s_{j-1} \circ d_{i} & \text{if } i < j \text{ and } j-i \leq n \\ id, & \text{if } i = j \text{ or } i = j+1 \\ s_{j} \circ d_{i-1}, & \text{if } i > j+1 \end{cases}$$
$$s_{i} \circ s_{j} = s_{j+1} \circ s_{i}, \text{ if } i \leq j.$$
$$(d_{0}s_{n+1})^{n+1} = id : A_{n} \to A_{n}$$

Remark 4. The two equivalent definitions are linked by $t_n = d_0 s_{n+1}$ and $s_{n+1} = t_n s_n t_n^{-1}$.

We can formally define the category Λ^{op} by objects $[0], [1], [2], \ldots$ and generating morphisms

$$d_i : [n] \to [n-1], \ 0 \le i \le n$$

 $s_i : [n] \to [n+1], \ 0 \le i \le n+1$

subject to the relations in Definition 3. In the opposite category Λ , d_i is written as δ_i and s_i is written as σ_i . The reader can find an alternate description of the category Λ in [2, Definition 9.6.3]. A cyclic object can be identified with a functor

$$A: \Lambda^{op} \to \mathscr{A}.$$

Definition 5. A standard cyclic set $\Lambda[n]$ is defined by

$$\Lambda[n]_q = \Lambda([q], [n]).$$

By Yoneda lemma we have

$$s\mathscr{S}et^c(\Lambda[n], A) \cong A_n.$$

Homework 6. Give an explicit description of the underlying simplicial set $j\Lambda[0]$ of the standard cyclic set $\Lambda[0]$. Prove that the geometric realization $|j\Lambda[0]|$ is homeomorphic to the circle S^1 .

In fact, we have $|j\Lambda[n]| \cong S^1 \times |\Delta[n]|$ in general. (See [1, Proposition 2.7]) The geometric realization of the underlying simplicial set of a cyclic set A can be expressed as

(1) $|jA| \cong \prod A_n \times |j\Lambda[n]| / \sim$ $(d_i a, x) \sim (a, \delta_i x), \ 0 \le i \le n$ $(s_i a, x) \sim (a, \sigma_i x), \ 0 \le i \le n+1$

Here we are using definition 3 for the cyclic sets. The immediate consequence of (1) is that |jA| is a space with an $S^1 \cong SO(2)$ action. Let \mathscr{U}^c be the category of S^1 -spaces. When both $s\mathscr{S}et^c$ and \mathscr{U}^c are equipped with suitable model structures (cofibrations, fibrations and weak equivalences), we have the following.

Theorem 7 ([1, Theorem 4.2]). $s \mathscr{S}et^c$ and \mathscr{U}^c are Quillen equivalent.

This implies that their homotopy categories are equivalent.

Cyclic Homology.

Assume that A is a cyclic object in an abelian category, the following double complex is called Tsygan's double complex and denoted by $CC_{**}(A)$.

Here $b = \sum_{i=0}^{n} (-1)^{i} d_{i}$ and $b' = \sum_{i=0}^{n-1} (-1)^{i} d_{i}$. We leave the reader to verify that this is indeed a double complex and the odd columns with b' as differentials are acyclic complexes.

Definition 8. The cyclic homology $HC_*(A)$ for a cyclic object A in an abelian category is the homology of Tot $CC_{**}(A)$. The cyclic homology of a k-algebra R is the cyclic homology of the cyclic sets $R \otimes R^{\otimes *}$.

Let CC^{01} be the first two columns of $CC_{**}(A)$, which is a double complex with other columns set to be trivial. The quotient $CC[-2] = CC/CC^{01}$ is a translation of CC and consider the short exact sequence of double complexes.

$$0 \to CC^{01} \xrightarrow{I} CC(A) \xrightarrow{S} CC[-2] \to 0.$$

The resulting long exact sequence is called "SBI" sequence.

Theorem 9 (SBI sequence). For any cyclic object A there is a long exact SBI sequence

$$\cdots \operatorname{HC}_{n+1}(A) \xrightarrow{S} \operatorname{HC}_{n-1}(A) \xrightarrow{B} \operatorname{HH}_n(A) \xrightarrow{I} \operatorname{HC}_n(A) \xrightarrow{S} \operatorname{HC}_{n-2}(A) \cdots$$

Exercise 10. Compute $HC_*(k[x])$.

If we extend Tsygan's first quadrant double complex to the left and obtain an upper half-plane double complex $CC^{P}_{**}(A)$, we can define the periodic cyclic homology.

$$\operatorname{HP}_{*}(A) = H_{*}\operatorname{Tot}^{\prod}(CC^{P}_{**}(A)).$$

We can also consider the negative subcomplex $CC^-_{**}(A)$ with columns $p\leq 0$ and define

$$HC_{*}^{-}(A) = H_{*}Tot^{11}(CC_{**}^{-}(A)).$$

If we filter Tsygan's double complex by columns we obtain a spectral sequence

$$E^2_{2p,q} = \operatorname{HH}_q(A) \Longrightarrow \operatorname{HC}_{2p+q}(A)$$

The d_2 differential $\operatorname{HH}_q(A) \to \operatorname{HH}_{q+1}(A)$ is called Connes' operator B.

Proposition 11. The following square commutes

$$\Omega_{R/k}^{n} \xrightarrow{\psi} \operatorname{HH}_{n}(R)$$

$$\downarrow B$$

$$\Omega_{R/k}^{n+1} \xrightarrow{\psi} \operatorname{HH}_{n+1}(R)$$

Theorem 12. If R is a smooth commutative algebra and essentially of finite type over a field k of characteristic 0, then

$$\operatorname{HC}_{n}(R) \cong \Omega_{R/k}^{n} / d\Omega_{R/k}^{n-1} \oplus H_{dR}^{n-2}(R) \oplus H_{dR}^{n-2}(R) \oplus \cdots$$
$$\operatorname{HP}_{n}(R) \cong \prod_{i \in \mathbb{Z}} H_{dR}^{n+2i}(R)$$

References

- W. G. Dwyer, M. J. Hopkins, and D. M. Kan. The homotopy theory of cyclic sets. Trans. Amer. Math. Soc., 291(1):281–289, 1985.
- [2] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.