LECTURE 5 - HOCHSCHILD HOMOLOGY

In this lecture we fix a commutative ring k and $\otimes=\otimes_{k}$.
Definition 1. Let R a k-algebra and M an $R-R$ bimodule. We define a simplicial k-module $M \otimes R^{\otimes \bullet}$ with $[n] \mapsto M \otimes R^{\otimes n}$ by

$$
\begin{gathered}
d_{i}\left(m\left[r_{1}|\cdots| r_{n}\right]\right)= \begin{cases}m r_{1}\left[r_{2}|\cdots| r_{n}\right] & \text { if } i=0 \\
m\left[r_{1}|\cdots| r_{i} r_{i+1}|\cdots| r_{n}\right] & \text { if } 0<i<n \\
r_{n} m\left[r_{1}|\cdots| r_{n-1}\right] & \text { if } i=n\end{cases} \\
s_{i}\left(m\left[r_{1}|\cdots| r_{n}\right]\right)=m\left[r_{1}|\cdots| r_{i}|1| r_{i+1}|\cdots| r_{n}\right] .
\end{gathered}
$$

The Hochschild homology $\mathrm{HH}_{*}(R, M)$ of R with coefficients in M is defined to be the k-modules

$$
\operatorname{HH}_{n}(R, M)=H_{n} C\left(M \otimes R^{\otimes *}\right),
$$

where $C\left(M \otimes R^{\otimes *}\right)$ is the associated chain complex with $d=\sum(-1)^{i} d_{i}$.
Proposition 2. $\mathrm{HH}_{0}(R, M) \cong M /[R, M]$.
Definition 3. Consider the cosimplicial k-module $[n] \mapsto \operatorname{Hom}_{k}\left(R^{\otimes n}, M\right)$ by

$$
\begin{gathered}
\delta_{i}(f)\left(r_{0}, r_{1}, \ldots, r_{n}\right)= \begin{cases}r_{0} f\left(r_{1}, \ldots, r_{n}\right) & \text { if } i=0 \\
f\left(r_{0}, \ldots, r_{i-1} r_{i}, \ldots, r_{n}\right) & \text { if } 0<i<n \\
f\left(r_{0}, \ldots, r_{n-1}\right) r_{n} & \text { if } i=n\end{cases} \\
\left(\sigma_{i} f\right)\left(r_{1}, \ldots, r_{n-1}\right)=f\left(r_{1}, \ldots, r_{i-1}, 1, r_{i}, \ldots, r_{n-1}\right) .
\end{gathered}
$$

The Hochschild cohomology $\mathrm{HH}^{*}(R, M)$ of R with coefficients in M is defined to be the k-modules

$$
\operatorname{HH}^{n}(R, M)=H_{n} C\left(\operatorname{Hom}_{k}\left(R^{\otimes n}, M\right)\right),
$$

where $C\left(\operatorname{Hom}_{k}\left(R^{\otimes n}, M\right)\right)$ is the associated chain complex with $\delta=\sum(-1)^{i} \delta_{i}$.
Proposition 4. $\mathrm{HH}^{0}(R, M) \cong\{m \in M: r m=m r \forall r \in R\}$.
Definition 5. The enveloping algebra of R is defined by $R^{e}=R \otimes R^{o p}$.
Theorem 6. $\mathrm{HH}(R, M) \cong \operatorname{Tor}_{*}^{R^{e} / k}(M, R), \mathrm{HH}^{*}(R, M) \cong \operatorname{Ext}_{R^{e} / k}^{*}(R, M)$.
Proposition 7. If

$$
0 \rightarrow M_{0} \rightarrow M_{1} \rightarrow M_{2} \rightarrow 0
$$

is a k-split exact sequence of bimodules, then there is a long exact sequence

$$
\cdots \xrightarrow{\partial} \mathrm{HH}_{i}\left(R, M_{0}\right) \rightarrow \mathrm{HH}_{i}\left(R, M_{1}\right) \rightarrow \mathrm{HH}_{i}\left(R, M_{2}\right) \xrightarrow{\partial} \mathrm{HH}_{i-1}\left(R, M_{0}\right) \rightarrow \cdots .
$$

Remark 8. If R is flat as a k-module (this is always the case when k is a field), then $\operatorname{HH}(R, M) \cong \operatorname{Tor}_{*}^{R^{e}}(M, R)$ and $\operatorname{HH}^{*}(R, M) \cong \operatorname{Ext}_{R^{e}}^{*}(R, M)$.

Example 9. Let $T=T(V)$ be the tensor algebra of a k-module V, and let M be a T-T-bimodule. Then $\mathrm{HH}_{i}(T, M)=0$ for $i \neq 0,1$ and there is an exact sequence

$$
0 \rightarrow \mathrm{HH}_{1}(T, M) \rightarrow M \otimes V \xrightarrow{b} M \rightarrow \mathrm{HH}_{0}(T, M) \rightarrow 0
$$

where $b(m \otimes v)=m v-v m$.
When $M=T$, we have

$$
\mathrm{HH}_{0}(T, T)=k \oplus \bigoplus_{i=1}^{\infty}\left(V^{\otimes i}\right)_{\sigma}, \operatorname{HH}_{1}(T, T)=\bigoplus_{i=1}^{\infty}\left(V^{\otimes i}\right)^{\sigma},
$$

where $\sigma\left(v_{1} \otimes \cdots \otimes v_{j}\right)=v_{j} \otimes v_{1} \otimes \cdots \otimes v_{j-1}$.
Example 10. If $R=k\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\mathrm{HH}_{i}(R, R) \cong \mathrm{HH}_{i}(R, R) \cong \wedge^{i}\left(R^{n}\right)
$$

Example 11. If $R=k[x] /\left(x^{n+1}\right)$, then $\mathrm{HH}_{i}(R, R)$ and $\mathrm{HH}^{i}(R, M)$ are 2-periodic for $i \geq 1$. In particular, when $\frac{1}{n+1} \in R$ we have $\operatorname{HH}_{i}(R, R) \cong \operatorname{HH}^{i}(R, R) \cong$ $R /\left(x^{n} R\right) \cong k[x] /\left(x^{n}\right)$ for all $i \geq 1$.
Theorem 12 (Change of ground rings). Let $k \rightarrow \ell$ be a commutative ring homomorphism. Then

$$
\operatorname{HH}_{*}^{k}(R, M) \cong \operatorname{HH}_{*}^{\ell}\left(R \otimes_{k} \ell, M\right), \quad \operatorname{HH}_{k}^{*}(R, M) \cong \operatorname{HH}_{\ell}^{*}\left(R \otimes_{k} \ell, M\right)
$$

Theorem 13 (Change of rings).
(1) (Product) If M^{\prime} is another $R^{\prime}-R^{\prime}$-bimodule, then

$$
\operatorname{HH}_{*}\left(R \times R^{\prime}, M \times M^{\prime}\right) \cong \operatorname{HH}_{*}(R, M) \oplus \operatorname{HH}_{*}\left(R^{\prime}, M^{\prime}\right)
$$

(2) (Flat base change) If T is a ring and a flat R-module, then

$$
\operatorname{HH}_{*}\left(T, T \otimes_{R} M \otimes_{R} T\right) \cong T \otimes_{R} \operatorname{HH}_{*}(R, M)
$$

(3) If S is a central multiplicative set in R, then

$$
\mathrm{HH}_{*}\left(S^{-1} R, S^{-1} R\right) \cong \mathrm{HH}_{*}\left(R, S^{-1} R\right) \cong S^{-1} \mathrm{HH}(R, R)
$$

Proposition 14. Let M, N be left R-modules. Then $\operatorname{Hom}_{k}(M, N)$ becomes an R-R-bimodule and

$$
\operatorname{HH}^{n}\left(R, \operatorname{Hom}_{k}(M, N)\right) \cong \operatorname{Ext}_{R / k}^{n}(M, N)
$$

Note that the kernel of the map $\delta: \operatorname{Hom}_{k}(R, M) \rightarrow \operatorname{Hom}_{k}(R \otimes R, M)$ is the set of all k-linear functions $f: R \rightarrow M$ satisfying the identity

$$
f\left(r_{0} r_{1}\right)=r_{0} f\left(r_{1}\right)+f\left(r_{0}\right) r_{1} .
$$

On the other hand, the image of $d: M \rightarrow \operatorname{Hom}_{k}(R, M)$ is the set of $f_{m}(r)=$ $r m-m r$. We call them the principal derivations and write $\operatorname{PDer}_{\mathrm{k}}(\mathrm{R}, \mathrm{M})$.

Proposition 15. $\mathrm{HH}^{1}(R, M)=\operatorname{Der}_{k}(R, M) / \operatorname{PDer}_{k}(R, M)$.
Definition 16. Assume that R is commutative. the Kähler differentials of R over k is the R-module $\Omega_{R / k}$ defined by

$$
\Omega_{R / k}=R\{d r: r \in R\} / I
$$

where I is the submodule generated by $d \alpha=0$ for all $\alpha \in k, d\left(r_{0}+r_{1}\right)=d\left(r_{0}\right)+d\left(r_{1}\right)$ and $d\left(r_{0} r_{1}\right)=r_{0}\left(d r_{1}\right)+\left(d r_{0}\right) r_{1}$.

Proposition 17. Let R be a commutative k-algebra, and M a right R-module. Making M into an R - R bimodule by the rule $r m=m r$, we have natural isomorphisms $\mathrm{HH}_{0}(R, M) \cong M$ and $\mathrm{HH}_{i}(R, M) \cong M \otimes_{R} \Omega_{R / k}$. In particular,

$$
\mathrm{HH}_{1}(R, R) \cong \Omega_{R / k}
$$

