LECTURE 4 - SIMPLICIAL HOMOTOPY

In this lecture, $\Delta[n] = \Delta[n]^s \in s\mathscr{S}et$ is the standard *n*-simplex in the category of simplicial sets.

Definition 1. The boundary of the $\Delta[n] \in s \mathscr{S}et$ is defined by

$$(\partial \Delta[n])_q = \begin{cases} \Delta[n]_q & q \le n-1\\ \text{iterated degeneracies of elements of the above} & q \ge n. \end{cases}$$

The k^{th} horn $\Lambda_k^n \subset \Delta[n]$ is the subcomplex of $\Delta[n]$ which is generated by all faces $d_j(\iota_n)$ except the k^{th} face $d_k(\iota_n)$. Here $\iota_n = id \in \Delta([n], [n])$ is the nondegenerate *n*-simplex of $\Delta[n]$.

Definition 2. A map $p: X \to Y$ of simplicial set is said to be a *(Kan) fibration* if for every commutative simplicial set homomorphisms

There is a map $\theta : \Delta[n] \to X$ making the diagram commute.

A *fibrant* simplicial set (or *Kan complex*) is a simplicial set Y such that the canonical map $Y \to *$ is a fibration.

Proposition 3. The simplicial set Y is a Kan complex if and only if for each ntuple of (n-1)-simplicies $(y_0, \ldots, y_{k-1}, y_{k+1}, \ldots, y)$ of Y such that $d_iy_j = d_{j-1}y_i$ if $i < j, i, j \neq k$, there is an n-simplex y such that $d_iy = y_i$ for $i \neq k$.

Example 4. The singular complexes $S_{\bullet}(X)$ of a topological spaces X, the classifying space BG of groups G and the underlying simplicial sets of simplicial groups are all Kan complex.

Definition 5. Let $f, g : K \to X$ be simplicial maps. We say that there is a simplicial homotopy $f \xrightarrow{\simeq}$ from f to g if there is a commutative diagram

The map h is called a *homotopy*.

The homotopy relation may fail to be an equivalence relation in general.

Lemma 6. If X is a Kan complex, then simplicial homotopy of vertices $x : \Delta[0] \to X$ of X is an equivalence relation.

Theorem 7. Suppose X is fibrant and $L \subset K$ is inclusion of simplicial sets. Then

- (1) homotopy of maps $K \to X$ an equivalence relation, and
- (2) homotopy of maps $K \to X(rel L)$ is an equivalence relation.

Definition 8. Let X be a fibrant simplicial set and let $v \in X_0$ be a vertex of X. Define $\pi_n(X, v) : n \ge 1$, to be the set of homotopy classes of maps $\alpha : \Delta[n] \to X$ (rel $\partial \Delta[n]$) for maps α which fit into diagrams

$$\begin{array}{c} \Delta[n] \xrightarrow{\alpha} X \\ \uparrow \\ 0 \\ \partial \Delta[n] \longrightarrow \Delta[0] \end{array}$$

Suppose $\alpha, \beta : \Delta[n] \to X$ represent elements of $\pi_n(X, v)$. Then the simplices

$$\begin{cases} v_i = v, & 0 \le i \le n-2\\ v_{n-1} = \alpha, \\ v_{n+1} = \beta, \end{cases}$$

satisfy $d_i v_j = d_{j-1}v_i$ if i < j and $i, j \neq n$, since all faces of all simplices v_i map through the vertex v. Thus, the v_i determine a simplicial set map

$$(v_0,\ldots,v_{n-1},v_{n+1}):\Lambda_n^{n+1}\to X,$$

and there is an extension

The assignment

 $([\alpha], [\beta]) \to [d_n \omega]$

gives a well-defined pairing

$$m: \pi_n(X, v) \times \pi_n(X, v) \to \pi_n(X, v).$$

Theorem 9. With these definitions, $\pi_n(X, v)$ is a group for $n \ge 1$ and abelian if $n \ge 2$.

Definition 10. Let X, Y be simplicial sets. The function complex Hom(X, Y) is the simplicial set defined by

$$\mathbf{Hom}(X,Y)_n = \hom(X \times \Delta[n],Y)$$

Suppose that $p: X \to Y$ is a Kan fibration between Kan complexes X, Y, and F is the fiber over a vertex $* \in Y$ in the sense that the square

is a pullback. Suppose that v is a vertex of F and that $\alpha : \Delta[n] \to Y$ represents an element of $\pi_n(Y, *)$. Then in the diagram

The element $[d_0\theta] \in \pi_{n-1}(F, v)$ is independent of the choice of θ and representative of $[\alpha]$.

Definition 11. The resulting function

$$\partial: \pi_n(Y, *) \to \pi_{n-1}(F, v)$$

is called the *boundary map*.

Theorem 12. The boundary map $\partial : \pi_n(Y, *) \to \pi_{n-1}(F, v)$ is a group homomorphism if n > 1, and the sequence

$$\cdots \to \pi_n(F, v) \xrightarrow{i_*} \pi_n(X, v) \xrightarrow{p_*} \pi_n(Y, *) \xrightarrow{\partial} \pi_{n-1}(F, v) \to \cdots$$
$$\cdots \xrightarrow{p_*} \pi_1(Y, *) \xrightarrow{\partial} \pi_0(F) \xrightarrow{i_*} \pi_0(X) \xrightarrow{p_*} \pi_0(Y)$$

is exact in the sense the the kernel equals image everywhere.

Next we introduce some constructions in the category of simplicial sets.

Proposition 13. There is an adjunction

$$\hom(K, \operatorname{Hom}(X, Y)) \xrightarrow{\cong} \hom(X \times K, Y).$$

Definition 14. For a Kan complex X and a vertex * of X, the *path space* PX is defined by the pullback diagram

$$PX \longrightarrow \operatorname{Hom}(\Delta[1], X) \quad .$$

$$\downarrow^{i_X} \qquad \qquad \downarrow^{(\delta_0)^*}$$

$$\Delta[0] \longrightarrow \operatorname{Hom}(\Delta[0], X) \cong X$$

Proposition 15. The map $\pi : PX \to X$ given by the composite

$$PX \xrightarrow{i_X} \mathbf{Hom}(\Delta[1], X) \xrightarrow{(\delta_1)^*} \mathbf{Hom}(\Delta[0], X) \cong X$$

is a fibration and PX is also fibrant.

 $\pi_i(PX, v)$ is trivial for $i \ge 0$ and all vertices v.

Definition 16. The loop space ΩX is defined to be the fiber of $\pi : PX \to X$ over the base point *.

A simplex of ΩX can be identified with a simplicial map $f : \Delta[n] \times \Delta[1] \to X$ such that the restriction of f to $\Delta[n] \times \partial \Delta[1]$ maps into *.