LECTURE 1 - COFIBER SEQUENCES

The goal of this lecture is to introduce the cofiber sequence of a pair and relate it to the long exact sequence of the cohomology groups.

Let \mathscr{T} be the category of (compactly generated) pointed spaces.
Definition 1. For $X, Y \in \mathscr{T}$, the smash product $X \wedge Y$ is defined by

$$
X \wedge Y=X \times Y / X \vee Y
$$

Definition 2. For $X \in \mathscr{T}$, we define the cone on X to be $C X=X \wedge I$, and the suspension of X to be $\Sigma X=X \wedge S^{1}$.

Theorem 3. Let $F(X, Y)$ be the space of based maps from X to Y. We have a natural homeomorphism of based spaces

$$
F(X \wedge Y, Z) \cong F(X, F(Y, Z))
$$

Example 4. We define the loop space of X to be $\Omega X=F\left(S^{1}, X\right)$. Then we have the adjunction

$$
F(\Sigma X, Y) \cong F(X, \Omega Y)
$$

Passing to π_{0}, this gives that

$$
[\Sigma X, Y]=[X, \Omega Y]
$$

If we let $X=S^{n}$, then this further gives that

$$
\pi_{n+1} Y=\pi_{n} \Omega Y
$$

Definition 5. For an abelian group A and an integer $n \geq 0$, we define the EilenbergMacLane space $K(A, n)$ to be a based CW complex such that

$$
\pi_{i}(K(\pi, n)) \cong \begin{cases}A, & i=n \\ 0, & i \neq n\end{cases}
$$

If $n=0$ or 1 , the group A is allowed to be non-abelian.
Example 6. $K(\mathbb{Z}, 1)=S^{1} . K(\mathbb{Z}, 2)=\mathbb{C} P^{\infty} . K(\mathbb{Z} / 2,1)=\mathbb{R} P^{\infty}$.
Theorem 7. The Eilenberg-MacLane spaces are unique up to homotopy equivalences.
Corollary 8. $K(A, n) \simeq \Omega K(A, n+1)$.
Theorem 9. $H^{n}(X, A) \cong[X, K(A, n)]$.
Definition 10. For a based map $f: X \rightarrow Y$, define the homotopy cofiber $C f$ to be

$$
C f=Y \cup_{f} C X=M f / j(X)
$$

where $j: X \rightarrow M f$ sends $x \rightarrow(x, 1)$.
The inclusion $i: Y \rightarrow C f$ is a cofibration since it is the pushout of f and the cofibration $X \rightarrow C X$ that sends x to $(x, 0)$. Let

$$
\pi: C f \rightarrow C f / Y \cong \Sigma X
$$

be the quotient map.

Definition 11. The sequence

$$
X \xrightarrow{f} Y \xrightarrow{i} C f \xrightarrow{\pi} \Sigma X \xrightarrow{-\Sigma f} \Sigma Y \xrightarrow{-\Sigma i} \Sigma C f \xrightarrow{-\Sigma \pi} \Sigma^{2} X \xrightarrow{\Sigma^{2} f} \Sigma^{2} Y \rightarrow \cdots
$$

is called the cofiber sequence generated by the map f; here

$$
(-\Sigma f)(x \wedge t)=f(x) \wedge(1-t)
$$

Theorem 12. For any based space Z, the induced sequence

$$
\cdots \rightarrow\left[\Sigma^{2} X, Z\right] \rightarrow[\Sigma C f, Z] \rightarrow[\Sigma Y, Z] \rightarrow[\Sigma X, Z] \rightarrow[C f, Z] \rightarrow[Y, Z] \rightarrow[X, Z]
$$

is an exact sequence of pointed sets, or of groups to the left of $[\Sigma X, Z]$, or of Abelian groups to the left of $\left[\Sigma^{2} X, Z\right]$.

Reading Homework 13. Read Chapter 8 Section 4 of [1] for the proof of the theorem.

Corollary 14. In the theorem, let $Z=K(A, n)$. then we have

$$
\cdots \rightarrow H^{n-1}(C f) \rightarrow H^{n-1}(Y) \rightarrow H^{n-1}(X) \rightarrow H^{n}(C f) \rightarrow H^{n}(Y) \rightarrow H^{n}(X)
$$

We can actually extend to the right by choosing bigger n (why?).

References

[1] J. P. May. A concise course in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1999.

