LECTURE 1 - COFIBER SEQUENCES

The goal of this lecture is to introduce the cofiber sequence of a pair and relate it to the long exact sequence of the cohomology groups.

Let \mathscr{T} be the category of (compactly generated) pointed spaces.

Definition 1. For $X, Y \in \mathcal{T}$, the smash product $X \wedge Y$ is defined by

$$X \wedge Y = X \times Y / X \vee Y$$

Definition 2. For $X \in \mathcal{T}$, we define the *cone* on X to be $CX = X \wedge I$, and the suspension of X to be $\Sigma X = X \wedge S^1$.

Theorem 3. Let F(X,Y) be the space of based maps from X to Y. We have a natural homeomorphism of based spaces

$$F(X \wedge Y, Z) \cong F(X, F(Y, Z))$$

Example 4. We define the *loop space* of X to be $\Omega X = F(S^1, X)$. Then we have the adjunction

$$F(\Sigma X, Y) \cong F(X, \Omega Y)$$

Passing to π_0 , this gives that

$$[\Sigma X, Y] = [X, \Omega Y].$$

If we let $X = S^n$, then this further gives that

$$\pi_{n+1}Y = \pi_n \Omega Y.$$

Definition 5. For an abelian group A and an integer $n \ge 0$, we define the *Eilenberg-MacLane* space K(A, n) to be a based CW complex such that

$$\pi_i(K(\pi, n)) \cong \begin{cases} A, & i = n, \\ 0, & i \neq n. \end{cases}$$

If n = 0 or 1, the group A is allowed to be non-abelian.

Example 6. $K(\mathbb{Z},1) = S^1$. $K(\mathbb{Z},2) = \mathbb{C}P^{\infty}$. $K(\mathbb{Z}/2,1) = \mathbb{R}P^{\infty}$.

Theorem 7. The Eilenberg-MacLane spaces are unique up to homotopy equivalences.

Corollary 8. $K(A, n) \simeq \Omega K(A, n+1)$.

Theorem 9. $H^n(X, A) \cong [X, K(A, n)].$

Definition 10. For a based map $f: X \to Y$, define the homotopy cofiber Cf to be

$$Cf = Y \cup_f CX = Mf/j(X)$$

where $j: X \to Mf$ sends $x \to (x, 1)$.

The inclusion $i: Y \to Cf$ is a cofibration since it is the pushout of f and the cofibration $X \to CX$ that sends x to (x, 0). Let

$$\pi: Cf \to Cf/Y \cong \Sigma X$$

be the quotient map.

Definition 11. The sequence

 $X \xrightarrow{f} Y \xrightarrow{i} Cf \xrightarrow{\pi} \Sigma X \xrightarrow{-\Sigma f} \Sigma Y \xrightarrow{-\Sigma i} \Sigma Cf \xrightarrow{-\Sigma \pi} \Sigma^2 X \xrightarrow{\Sigma^2 f} \Sigma^2 Y \to \cdots$

is called the *cofiber sequence generated by the map* f; here

$$(-\Sigma f)(x \wedge t) = f(x) \wedge (1-t).$$

Theorem 12. For any based space Z, the induced sequence

 $\cdots \to [\Sigma^2 X, Z] \to [\Sigma Cf, Z] \to [\Sigma Y, Z] \to [\Sigma X, Z] \to [Cf, Z] \to [Y, Z] \to [X, Z]$

is an exact sequence of pointed sets, or of groups to the left of $[\Sigma X, Z]$, or of Abelian groups to the left of $[\Sigma^2 X, Z]$.

Reading Homework 13. Read Chapter 8 Section 4 of [1] for the proof of the theorem.

Corollary 14. In the theorem, let
$$Z = K(A, n)$$
. then we have
 $\dots \to H^{n-1}(Cf) \to H^{n-1}(Y) \to H^{n-1}(X) \to H^n(Cf) \to H^n(Y) \to H^n(X).$

We can actually extend to the right by choosing bigger n (why?).

References

 J. P. May. A concise course in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1999.